Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511268

RESUMO

Multiple Myeloma (MM) is an incurable plasma cell malignancy, that despite an unprecedented increase in overall survival, lacks truly risk-adapted or targeted treatments. A proportion of patients with MM depend on BCL-2 for survival and recently the BCL-2 antagonist venetoclax has shown clinical efficacy and safety in t(11;14) and BCL-2 overexpressing MM. However, only a small proportion of MM patients rely on BCL-2 (~20%), there is a need to broaden the patient population outside of t(11;14) that can be treated with venetoclax. Therefore, we took an unbiased screening approach and screened epigenetic modifiers to enhance venetoclax sensitivity in two non-BCL-2 dependent MM cell lines. The demethylase inhibitor 5-azacytidine was one of the lead hits from the screen, and the enhanced cell killing of the combination was confirmed in additional MM cell lines. Using dynamic BH3 profiling and immunoprecipitations we identified the potential mechanism of synergy is due to increased NOXA expression, through the integrated stress response. Knockdown of PMAIP1 or PKR partially rescues cell death of the venetoclax and 5-azacytidine combination treatment. The addition of a steroid to the combination treatment did not enhance the cell death and interestingly we found enhanced death of the immune cells with steroid addition, suggesting that a steroid-sparing regimen may be more beneficial in MM. Lastly, we show for the first time in primary MM patient samples, that 5-azacytidine enhances the response to venetoclax ex-vivo, across diverse anti-apoptotic dependencies (BCL-2 or MCL-1) and diverse cytogenetic backgrounds. Overall, our data identifies 5-azacytidine and venetoclax as an effective treatment combination and this could be a tolerable steroid-sparing regimen, particularly for elderly MM patients.

2.
Mol Cancer Ther ; 19(2): 525-539, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31748345

RESUMO

The RAS-regulated RAF-MEK1/2-ERK1/2 signaling pathway is frequently deregulated in cancer due to activating mutations of growth factor receptors, RAS or BRAF. Both RAF and MEK1/2 inhibitors are clinically approved and various ERK1/2 inhibitors (ERKi) are currently undergoing clinical trials. To date, ERKi display two distinct mechanisms of action (MoA): catalytic ERKi solely inhibit ERK1/2 catalytic activity, whereas dual mechanism ERKi additionally prevents the activating phosphorylation of ERK1/2 at its T-E-Y motif by MEK1/2. These differences may impart significant differences in biological activity because T-E-Y phosphorylation is the signal for nuclear entry of ERK1/2, allowing them to access many key transcription factor targets. Here, we characterized the MoA of five ERKi and examined their functional consequences in terms of ERK1/2 signaling, gene expression, and antiproliferative efficacy. We demonstrate that catalytic ERKi promote a striking nuclear accumulation of p-ERK1/2 in KRAS-mutant cell lines. In contrast, dual-mechanism ERKi exploits a distinct binding mode to block ERK1/2 phosphorylation by MEK1/2, exhibit superior potency, and prevent the nuclear accumulation of ERK1/2. Consequently, dual-mechanism ERKi exhibit more durable pathway inhibition and enhanced suppression of ERK1/2-dependent gene expression compared with catalytic ERKi, resulting in increased efficacy across BRAF- and RAS-mutant cell lines.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/análise , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Humanos , Masculino , Camundongos , Camundongos Nus , Fosforilação
3.
Nat Commun ; 10(1): 5167, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727888

RESUMO

BRAF and MEK1/2 inhibitors are effective in melanoma but resistance inevitably develops. Despite increasing the abundance of pro-apoptotic BIM and BMF, ERK1/2 pathway inhibition is predominantly cytostatic, reflecting residual pro-survival BCL2 family activity. Here, we show that uniquely low BCL-XL expression in melanoma biases the pro-survival pool towards MCL1. Consequently, BRAF or MEK1/2 inhibitors are synthetic lethal with the MCL1 inhibitor AZD5991, driving profound tumour cell death that requires BAK/BAX, BIM and BMF, and inhibiting tumour growth in vivo. Combination of ERK1/2 pathway inhibitors with BCL2/BCL-w/BCL-XL inhibitors is stronger in CRC, correlating with a low MCL1:BCL-XL ratio; indeed the MCL1:BCL-XL ratio is predictive of ERK1/2 pathway inhibitor synergy with MCL1 or BCL2/BCL-w/BCL-XL inhibitors. Finally, AZD5991 delays acquired BRAFi/MEKi resistance and enhances the efficacy of an ERK1/2 inhibitor in a model of acquired BRAFi + MEKi resistance. Thus combining ERK1/2 pathway inhibitors with MCL1 antagonists in melanoma could improve therapeutic index and patient outcomes.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Camundongos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...